CSCI 210: Computer Architecture Lecture 7: Negative Numbers, Overflow

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

Announcements

Problem Set 1 due Friday

Problem Set 2 due in a week

Questions So Far?

How We Store Numbers

- Binary numbers in memory are stored using a finite, fixed number of bits (typically 8, 16, 32, or 64)
 - 8 bits = byte (usually and always in this class)

Pad extra digits with leading 0s

• A byte representing $4_{10} = 00000100$

A byte (8 bits) can store nonnegative values from 0 up to

A. 127

B. 128

C. 255

D. 256

Java

- A byte is 8 bits
- A char is 16 bits
- A short is 16 bits
- An int is 32 bits
- A long is 64 bits

Rust

bools are 1 byte, chars are 4 bytes

- Specify size in type for integers
 - -i8, i16, i32, etc.

- isize or usize will be the size of an address on the architecture it's compiled for
 - 32 bits on 32 bit systems, 64 bits on 64 bit systems

In C, an int is

A. 8 bits

D. It depends

B. 16 bits

E. None of the above

C. 32 bits

C specifies a *minimum size* for types

- chars are 1 byte and must be at least 8 bits (but can be more!)
- shorts and ints must be at least 16 bits
- longs are at least 32 bits
- long longs are at least 64 bits
- sizeof (type) tells us how many bytes type is

```
    1 = sizeof(char) ≤ sizeof(short)
    ≤ sizeof(int) ≤ sizeof(long)
    ≤ sizeof(long long)
```

So how do I know?

• Use sizeof (int) to check

• Or use C99 types like int16_t or int32_t

How do we indicate a negative number?

Sign and magnitude (History; and for floating point numbers)

Ones' Compliment (History)

Two's Compliment (Modern Systems)

Sign and Magnitude

Have a separate bit for sign

Set it to 0 for positive, and 1 for negative

Can represent from -127 to 127 in 8 bits

• With n bits, can represent $-(2^{n-1}-1)$ to $2^{n-1}-1$

Addition and subtraction are a hassle

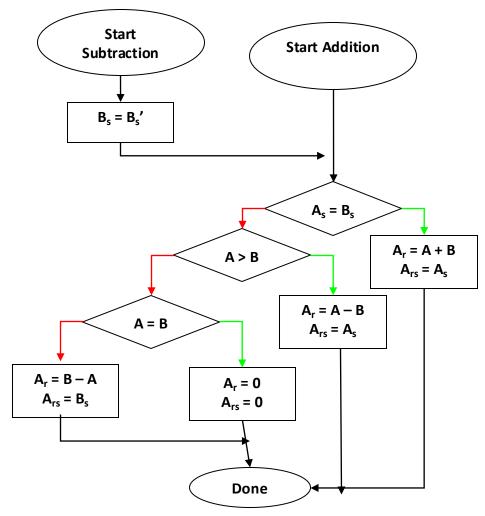


Diagram from Marek Andrzej Perkowski

A byte representing -6_{10} in Sign and Magnitude (with leftmost sign bit) is

A.0000 0111

D.1111 1110

B.1000 0110

E. None of the above

C.1000 0111

Which is NOT a drawback of Sign and Magnitude?

- A. There are two zeros
- B. Unclear where to put the sign bit
- C. Complicated arithmetic
- D. Difficult to convert numbers to negative representation
- E. None of the above

Ones' Complement

To make a number negative, just flip all its bits!

Need to know how many bits: -5 in

```
-4 \text{ bits: } -0101 = 1010
```

 $-8 \text{ bits: } -0000 \ 0101 = 1111 \ 1010$

A byte representing -6₁₀ in Ones' Complement is

A.0000 0110

B.1000 0110

C.1111 1001

D.1111 0110

Ones' complement

- Two zeros: 00000000 and 11111111 (in 8 bits)
- Addition:
 - Perform normal n-bit addition
 - Add the carryout bit back to the result

Ones' complement addition example

```
-3 + -16 in ones' complement example (in 8 bits)

1111 1100
+ 1110 1111

1 1110 1011
```

Add the carryout bit 1 back to the result

Ones' complement addition example

```
-3 + -16 in ones' complement example (in 8 bits)
  1111 1100
+ 1110 1111
1 1110 1011
```

 $1110 \ 1100 = -19$

Two's Complement

- To compute –x, flip all the bits of x and add 1
- For n bits, the unsigned version of $-x = 2^n x$
- Can represent –128 to 127 in 8 bits
 - In n bits, can represent -2^{n-1} to $2^{n-1} 1$
- Only one zero (00000000 in 8 bits)
- Used in modern computers

Short aside

- ones' complement involves taking each bit and taking the complement with respect to 1; there are many bits so many complements with respect to 1 hence "ones' complement"
- **two's complement** involves taking a complement with respect to a single power of 2, not bit-by-bit, hence "two's complement" (as unsigned n-bit binary numbers $x + -x = 2^n$)
- Yes. It *is* confusing. No. No one remembers this. The book gets it wrong

-6 in Two's Complement

A.1111 0110

B.1111 1001

C.1111 1010

D.1111 1110

Two's Complement: $1111 1101_2 = ?_{10}$

- A. -2
- B. -3
- C. -4
- D. -5
- E. None of the above

If we multiply $1111 \quad 0001_2$ by -1, we get ______2

A.0000 1110

B.0000 1111

C.0001 1110

D.0111 0001

Addition and Subtraction

Positive and negative numbers are handled in the same way.

The carry out from the most significant bit is ignored.

To perform the subtraction A – B, compute A + (two's complement of B)

For n bits, the sum of a number and its negation will be

A.
$$0_{n-1}...0_0$$

B.
$$1_{n-1}0_{n-2}...0_0$$

C.
$$1_{n-1}...1_0$$

D. It will vary

A.0000 0010

B.0000 1100

C.1111 0010

D.1111 1110

A.0010

B.0100

C.1000

D. 1111

Overflow

 Overflow occurs when arithmetic results in a value which cannot be represented using the number of bits available

 In that case, the algorithms we have been using produce incorrect results!

What will this Java code print?

A.-2147483648

B. 0

C.2147483647

D.2147483648

```
public static void main(String args[]) {
   int x = 2147483647;
   x = x + 1;
   System.out.println(x);
}
```

Handling Overflow

Hardware can detect when overflow occurs

- Software may or may not check for overflow
 - Java guarantees two's complement behavior!
 - In C, overflow is "undefined behavior" meaning, it can do anything
 - In Rust, overflow is checked in debug builds (and causes a panic if it occurs) but not optimized builds!

How To Detect Overflow

 On an addition, an overflow occurs if and only if the carry into the sign bit differs from the carry out from the sign bit.

- For example, overflow occurs if
 - adding two negative numbers produces a positive result
 - adding two positive numbers produces a negative result

Overflow (or not) examples (in 8 bits)

```
• 0111 0001
 + 0001 0100
   1000 0101
               Carry in = 1, carry out = 0
 + 0000 0010
   0000 0001
               Carry in = 1, carry out = 1
• 1111 0000
 + 1111 1101
   1110 1101
               Carry in = 1, carry out = 1
```

Overflow (or not) examples (in 8 bits)

```
• \frac{1}{1111} 0001
+ \frac{1000 0100}{0111 0101} Carry in = 0, carry out = 1
```

Will $0111 \ 1111_2 + 0000 \ 0101_2$ result in overflow when treated as 8-bit signed integers?

A. Yes

B. No

C. It depends

Overflow with other arithmetic operations

- Addition: add two large positive numbers together
- Subtraction: Subtract a large negative number from a large positive number
- Multiplication: Multiply two mid-sized numbers
- Division: ???

What is 1000 0000₂ / -1 in 8 bits? Does overflow occur?

- A. 0000 0000, no overflow
- B. 0111 1111, no overflow
- C. 1000 0000, no overflow
- D. 0111 1111, overflow
- E.1000 0000, overflow

Unsigned Numbers

- Some types of numbers, such as memory addresses, will never be negative
- Some programming languages reflect this with types such as "unsigned int", which only hold positive numbers
 - -uint64 tin C99
 - -u64, usize in Rust
 - Java only has signed types (except for char which is unsigned 16-bit)
- In an unsigned byte, values will range from 0 to 255

In MIPS

- add, sub, addi instructions cause exceptions on (signed) overflow
- addu, subu, addiu instructions do not

- Rationale: In C, unsigned types never cause overflow, they're defined to wrap (produce a value modulo 2ⁿ)
- In practice: Since overflow is undefined behavior, it is assumed to never happen so compilers always use addu/subu/addiu

Reading

- Next lecture: How Instructions Are Represented
 - Section 2.5

Problem Set 2 due Friday

Lab 1 due next Sunday